Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Gastroenterology ; 165(1): 133-148.e17, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907523

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS: We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS: Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS: Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Domínio TEA , Neoplasias Pancreáticas
2.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511816

RESUMO

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Assuntos
Carcinoma de Células Escamosas , Genoma , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Epigênese Genética , Carcinoma de Células Escamosas/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo
3.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139638

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.

4.
Gastroenterology ; 162(4): 1272-1287.e16, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34953915

RESUMO

BACKGROUND & AIMS: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMN) with an associated invasive carcinoma (IPMNinv) arise from 2 distinct precursors, and their fundamental differences remain obscure. Here, we aimed to assess the difference of chromatin architecture regulating the transcriptional signatures or biological features in pancreatic cancers. METHODS: We established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, IPMNinv, and PDAC. We performed exome sequencing (seq), RNA-seq, assay for transposase-accessible chromatin-seq, chromatin immunoprecipitation-seq, high-throughput chromosome conformation capture, and phenotypic analyses with short hairpin RNA or clustered regularly interspaced short palindromic repeats interference. RESULTS: Established organoids successfully reproduced the histology of primary tumors. IPMN and IPMNinv organoids harbored GNAS, RNF43, or KLF4 mutations and showed the distinct expression profiles compared with PDAC. Chromatin accessibility profiles revealed the gain of stomach-specific open regions in IPMN and the pattern of diverse gastrointestinal tissues in IPMNinv. In contrast, PDAC presented an impressive loss of accessible regions compared with normal pancreatic ducts. Transcription factor footprint analysis and functional assays identified that MNX1 and HNF1B were biologically indispensable for IPMN lineages. The upregulation of MNX1 was specifically marked in the human IPMN lineage tissues. The MNX1-HNF1B axis governed a set of genes, including MYC, SOX9, and OLFM4, which are known to be essential for gastrointestinal stem cells. High-throughput chromosome conformation capture analysis suggested the HNF1B target genes to be 3-dimensionally connected in the genome of IPMNinv. CONCLUSIONS: Our organoid analyses identified the MNX1-HNF1B axis to be biologically significant in IPMN lineages.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Fator 1-beta Nuclear de Hepatócito , Proteínas de Homeodomínio , Neoplasias Intraductais Pancreáticas , Fatores de Transcrição , Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/patologia , Cromatina , Fator 1-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Intraductais Pancreáticas/genética , Fatores de Transcrição/genética , Neoplasias Pancreáticas
5.
Front Oncol ; 11: 682872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249730

RESUMO

Pancreatic cancer is the most common lethal malignancy, with little improvement in patient outcomes over the decades. The development of early detection methods and effective therapeutic strategies are needed to improve the prognosis of patients with this disease. Recent advances in cancer genomics have revealed the genetic landscape of pancreatic cancer, and clinical trials are currently being conducted to match the treatment to underlying mutations. Liquid biopsy-based diagnosis is a promising method to start personalized treatment. In addition to genome-based medicine, personalized models have been studied as a tool to test candidate drugs to select the most efficacious treatment. The innovative three-dimensional organoid culture platform, as well as patient-derived xenografts can be used to conduct genomic and functional studies to enable personalized treatment approaches. Combining genome-based medicine with drug screening based on personalized models may fulfill the promise of precision medicine for pancreatic cancer.

6.
Gastroenterology ; 160(6): 2133-2148.e6, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465373

RESUMO

BACKGROUND & AIMS: Peribiliary glands (PBGs), clusters of epithelial cells residing in the submucosal compartment of extrahepatic bile ducts, have been suggested as biliary epithelial stem/progenitor cell niche; however, evidence to support this claim is limited because of a lack of PBG-specific markers. We therefore sought to identify PBG-specific markers to investigate the potential role of PBGs as stem/progenitor cell niches, as well as an origin of cancer. METHODS: We examined the expression pattern of the Wnt target gene Axin2 in extrahepatic bile ducts. We then applied lineage tracing to investigate whether Axin2-expressing cells from PBGs contribute to biliary regeneration and carcinogenesis using Axin2-CreERT mice. RESULTS: Wnt signaling activation, marked by Axin2, was limited to PBGs located in the periampullary region. Lineage tracing showed that Axin2-expressing periampullary PBG cells are capable of self-renewal and supplying new biliary epithelial cells (BECs) to the luminal surface. Additionally, the expression pattern of Axin2 and the mature ductal cell marker CK19 were mutually exclusive in periampullary region, and fate tracing of CK19+ luminal surface BECs showed gradual replacement by CK19- cells, further supporting the continuous replenishment of new BECs from PBGs to the luminal surface. We also found that Wnt signal enhancer R-spondin3 secreted from Myh11-expressing stromal cells, corresponding to human sphincter of Oddi, maintained the periampullary Wnt signal-activating niche. Notably, introduction of PTEN deletion into Axin2+ PBG cells, but not CK19+ luminal surface BECs, induced ampullary carcinoma whose development was suppressed by Wnt inhibitor. CONCLUSION: A specific cell population receiving Wnt-activating signal in periampullary PBGs functions as biliary epithelial stem/progenitor cells and also the cellular origin of ampullary carcinoma.


Assuntos
Ampola Hepatopancreática , Proteína Axina/metabolismo , Carcinoma/patologia , Neoplasias do Ducto Colédoco/patologia , Células Epiteliais/patologia , Células-Tronco/patologia , Via de Sinalização Wnt , Ampola Hepatopancreática/patologia , Animais , Proteína Axina/genética , Ductos Biliares Extra-Hepáticos/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Carcinogênese/genética , Linhagem da Célula , Proliferação de Células , Células Epiteliais/metabolismo , Queratina-19/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , PTEN Fosfo-Hidrolase/genética , Esfíncter da Ampola Hepatopancreática/metabolismo , Células-Tronco/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo
7.
Gut ; 70(9): 1713-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087490

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is the deadliest cancer. Cancer-associated thrombosis/thromboembolism (CAT), frequently observed in PDAC, is known as a poor prognostic factor. Here, we investigated the underlying mechanisms between PDAC and CAT, and performed a trial of therapeutic approach for PDAC using a genetically engineered mouse model, PKF (Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox ). DESIGN: Presence of CAT in PKF mice was detected by systemic autopsy. Plasma cytokines were screened by cytokine antibody array. Murine and human plasma atrial natriuretic peptide (ANP) and soluble vascular cell adhesion molecule 1 (sVCAM-1) were determined by ELISA. Distribution of VCAM-1 in PKF mice and human autopsy samples was detected by immunohistochemistry. PKF mice were treated with anti-VCAM-1 antibody and the effects on survival, distribution of CAT and the tumour histology were analysed. RESULTS: We found spontaneous CAT with cardiomegaly in 68.4% PKF mice. Increase of plasma ANP and sVCAM-1 was observed in PKF mice and PDAC patients with CAT. VCAM-1 was detected in the activated endothelium and thrombi. Administration of anti-VCAM-1 antibody to PKF mice inhibited tumour growth, neutrophil/macrophage infiltration, tumour angiogenesis and progression of CAT; moreover, it dramatically extended survival (from 61 to 253 days, p<0.01). CONCLUSION: Blocking VCAM-1/sVCAM-1 might be a potent therapeutic approach for PDAC as well as CAT, which can contribute to the prognosis. Increase of plasma ANP and sVCAM-1 might be a diagnostic approach for CAT in PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Trombose/etiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/terapia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/terapia , Trombose/prevenção & controle , Microambiente Tumoral
8.
Sci Rep ; 10(1): 21194, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273652

RESUMO

Pancreatic cancer is one of the malignant diseases with the worst prognosis. Resistance to chemotherapy is a major difficulty in treating the disease. We analyzed plasma samples from a genetically engineered mouse model of pancreatic cancer and found soluble vascular cell adhesion molecule-1 (sVCAM-1) increases in response to gemcitabine treatment. VCAM-1 was expressed and secreted by murine and human pancreatic cancer cells. Subcutaneous allograft tumors with overexpression or knock-down of VCAM-1, as well as VCAM-1-blocking treatment in the spontaneous mouse model of pancreatic cancer, revealed that sVCAM-1 promotes tumor growth and resistance to gemcitabine treatment in vivo but not in vitro. By analyzing allograft tumors and co-culture experiments, we found macrophages were attracted by sVCAM-1 to the tumor microenvironment and facilitated resistance to gemcitabine in tumor cells. In a clinical setting, we found that the change of sVCAM-1 in the plasma of patients with advanced pancreatic cancer was an independent prognostic factor for gemcitabine treatment. Collectively, gemcitabine treatment increases the release of sVCAM-1 from pancreatic cancer cells, which attracts macrophages into the tumor, thereby promoting the resistance to gemcitabine treatment. sVCAM-1 may be a potent clinical biomarker and a potential target for the therapy in pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/fisiologia , Macrófagos/patologia , Neoplasias Pancreáticas/patologia , Molécula 1 de Adesão de Célula Vascular/fisiologia , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico , Molécula 1 de Adesão de Célula Vascular/sangue , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Cancer Discov ; 10(10): 1566-1589, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32703770

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Ductos Pancreáticos/transplante , Animais , Carcinoma Ductal Pancreático , Modelos Animais de Doenças , Humanos , Camundongos , Prognóstico
10.
Kidney Int ; 98(5): 1225-1241, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32610050

RESUMO

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed ß-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate ß-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Cílios , Cistos/genética , Humanos , Rim , Fígado , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética
11.
Elife ; 92020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32329713

RESUMO

A highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. Here, we investigated whether squamous trans-differentiation of human and mouse pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous pancreatic cancer cells secrete factors that recruit neutrophils and convert pancreatic stellate cells into cancer-associated fibroblasts (CAFs) that express inflammatory cytokines at high levels. We use gain- and loss-of-function approaches to show that squamous-subtype pancreatic tumor models become enriched with neutrophils and inflammatory CAFs in a p63-dependent manner. These effects occur, at least in part, through p63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A and CXCL1 as key targets. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.


Assuntos
Carcinoma Ductal Pancreático/patologia , Transdiferenciação Celular/fisiologia , Inflamação/patologia , Neoplasias Pancreáticas/patologia , Animais , Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/imunologia , Linhagem da Célula , Citocinas/genética , Citocinas/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neoplasias Pancreáticas/imunologia , Células Estromais/patologia , Microambiente Tumoral
12.
Oncogenesis ; 8(2): 8, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659170

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense stromal reaction (desmoplasia). We have previously reported that mice with conditional KrasG12D mutation and knockout of TGF-ß receptor type II (Tgfbr2), PKF mice, develop PDAC with desmoplasia modulated by CXC chemokines that are produced by PDAC cells through tumor-stromal interaction. In this study, we further discovered that PDAC and cancer-associated fibroblast (CAF) accelerated each other's invasion and migration through the CXC chemokines-receptor (CXCLs-CXCR2) axis. Heterozygous knockout of Cxcr2 in PKF mice (PKF2h mice) prolonged survival and inhibited both tumor angiogenesis and PDAC microinvasion. Infiltration of neutrophils, myeloid-derived suppressor cells (MDSCs), and arginase-1+ M2-like tumor-associated macrophages (TAMs) significantly decreased in the tumors of PKF2h mice, whereas inducible nitric oxide synthase (iNOS)+ M1-like TAMs and apoptotic tumor cells markedly increased, which indicated that blockade of the CXCLs-CXCR2 axis resulted in a shift of immune-inflammatory microenvironment. These results suggest that blocking of the CXCLs-CXCR2 axis in tumor-stromal interactions could be a therapeutic approach against PDAC progression.

13.
Cell Rep ; 25(7): 1741-1755.e7, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428345

RESUMO

The aberrant expression of squamous lineage markers in pancreatic ductal adenocarcinoma (PDA) has been correlated with poor clinical outcomes. However, the functional role of this putative transdifferentiation event in PDA pathogenesis remains unclear. Here, we show that expression of the transcription factor TP63 (ΔNp63) is sufficient to install and sustain the enhancer landscape and transcriptional signature of the squamous lineage in human PDA cells. We also demonstrate that TP63-driven enhancer reprogramming promotes aggressive tumor phenotypes, including enhanced cell motility and invasion, and an accelerated growth of primary PDA tumors and metastases in vivo. This process ultimately leads to a powerful addiction of squamous PDA cells to continuous TP63 expression. Our study demonstrates the functional significance of squamous transdifferentiation in PDA and reveals TP63-based reprogramming as an experimental tool for investigating mechanisms and vulnerabilities linked to this aberrant cell fate transition.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Camundongos , Fenótipo , Transcrição Gênica
14.
Cancer Discov ; 8(9): 1112-1129, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29853643

RESUMO

Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. We generated a pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous responses to standard-of-care chemotherapeutics and investigational agents. In a case study manner, we found that PDO therapeutic profiles paralleled patient outcomes and that PDOs enabled longitudinal assessment of chemosensitivity and evaluation of synchronous metastases. We derived organoid-based gene expression signatures of chemosensitivity that predicted improved responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. Finally, we nominated alternative treatment strategies for chemorefractory PDOs using targeted agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.Significance: New approaches to prioritize treatment strategies are urgently needed to improve survival and quality of life for patients with pancreatic cancer. Combined genomic, transcriptomic, and therapeutic profiling of PDOs can identify molecular and functional subtypes of pancreatic cancer, predict therapeutic responses, and facilitate precision medicine for patients with pancreatic cancer. Cancer Discov; 8(9); 1112-29. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Antineoplásicos/farmacologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Organoides/química , Organoides/citologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão , Estudos Prospectivos , Análise de Sequência de RNA , Padrão de Cuidado , Células Tumorais Cultivadas
15.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28757253

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epigenômica , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Organoides/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
16.
Oncotarget ; 7(38): 61469-61484, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27528027

RESUMO

Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-ß pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-ß-dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC.


Assuntos
Azepinas/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Actinas/metabolismo , Animais , Azepinas/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Cultura Primária de Células , Proteínas/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Clin Gastroenterol ; 50(4): 331-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26565969

RESUMO

OBJECTIVE: To predict the duration of steroid maintenance therapy required to achieve good prognosis in patients with autoimmune pancreatitis. PATIENTS AND METHODS: The study sample comprised 21 patients with autoimmune pancreatitis who met the following criteria: (1) they received steroid therapy (ST) for at least 3 years without clinical relapse; and (2) immunoglobulin (Ig) G<1600 mg/dL was observed in the past year with a prednisolone maintenance dose ≤5 mg. All patients could be diagnosed with international consensus diagnostic criteria. Patients were prospectively followed up after tapering and cessation of steroids. Clinical relapse was defined as the need to resume ST. Serological relapse was defined as having an IgG level of >1600 mg/dL. RESULTS: During the 43-month (range, 19 to 48 mo) follow-up period, clinical relapse occurred in 10 patients: pancreatic lesion in 4; coronary lesion in 2; submandibular lesion in 1; both pulmonary and renal lesions in 1; pulmonary, retroperitoneal, and submandibular lesions in 1; and bronchial asthma in 1. Serological relapse was observed in 12 patients. Although clinical and serological relapse occurred concomitantly in 3 patients, serological relapse preceded clinical relapse in 4 patients. Five patients experienced serological relapse alone, and no clinical or serological relapse occurred in 6 patients. According to Cox proportional hazard analysis, the duration of ST before tapering was a significant predictive parameter (hazard ratio, 0.969/month; 95% confidence interval, 0.940-0.998; P=0.038). CONCLUSIONS: ST cessation resulted in a high rate of clinical relapses, even in patients with long-term maintenance therapy. Therefore, it appears desirable to continue steroid maintenance therapy for a period >3 years to prevent relapse.


Assuntos
Anti-Inflamatórios/administração & dosagem , Doenças Autoimunes/tratamento farmacológico , Pancreatite/tratamento farmacológico , Esteroides/administração & dosagem , Adulto , Idoso , Anti-Inflamatórios/efeitos adversos , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Biomarcadores/sangue , Distribuição de Qui-Quadrado , Esquema de Medicação , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Pancreatite/sangue , Pancreatite/diagnóstico , Pancreatite/imunologia , Modelos de Riscos Proporcionais , Estudos Prospectivos , Recidiva , Indução de Remissão , Fatores de Risco , Esteroides/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
18.
J Gastroenterol ; 51(7): 711-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26614007

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is the most common type of cancer with the worst prognosis among the bile duct cancers. There still remains a clear need for effective mechanism-based novel therapeutic approaches. A crosstalk between mitogen-activated protein kinase (MAPK) and the mammalian target of Rapamycin (mTOR) signaling pathways has been reported in several cancers. We hypothesized that targeting both pathways in combination will be a potent therapeutic for GBC. METHODS: Expression of phospho-ERK and phospho-S6rp protein were evaluated by immunostaining in surgically resected GBC specimens (n = 30). GBC cell lines and a xenograft model were treated with CI-1040, an inhibitor of MEK (mitogen-activated protein kinase kinase) and RAD001, an inhibitor of mTOR, alone or in combination, and then, we examined the cell proliferation and tumor growth, cell cycle status, and apoptosis. RESULTS: Analysis of human GBC tissues demonstrated that MAPK and mTOR signaling pathways were frequently coordinately dysregulated in one third of them. The combination therapy inhibited both signaling pathways and subsequently inhibited human GBC cell proliferation in vitro and xenograft tumor growth in vivo. Compared to the single treatment, the combination therapy significantly induced cell cycle arrest and apoptosis with decreased cyclin D1 expression. CONCLUSIONS: The double blockade of MAPK and mTOR signaling pathways inhibits the signal crosstalk and shows anti-tumor activity, which can be a potent therapeutic for GBC, especially for the patients with hyperactivated signaling of both pathways.


Assuntos
Benzamidas/uso terapêutico , Carcinoma/tratamento farmacológico , Everolimo/uso terapêutico , Neoplasias da Vesícula Biliar/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Carcinoma/patologia , Técnicas de Cultura de Células , Feminino , Neoplasias da Vesícula Biliar/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pancreas ; 44(3): 380-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25636085

RESUMO

OBJECTIVES: Malignant ascites (MA) caused by peritoneal carcinomatosis is not uncommon in patients with pancreatic cancer. However, the clinical features and outcomes in these patients remain to be elucidated. METHODS: Baseline characteristics and overall survival (OS) of consecutive patients with advanced pancreatic cancer who presented with MA were retrospectively evaluated. RESULTS: Of 494 patients with advanced pancreatic cancer, 73 (15%) presented with MA. Patients with synchronous MA (n = 21), compared with those with metachronous MA (n = 52), had better performance status (P = 0.02), smaller amount of ascites (P < 0.01), and higher chance of receiving chemotherapy (57% vs 17%, P < 0.01), and resulted in longer OS (115 vs 42 days, P < 0.01). Overall survival was significantly longer in patients receiving chemotherapy than in those with best supportive care alone (124 vs 50 days, P < 0.01). In a multivariate analysis, chemotherapy was prognostic in addition to performance status, CRP, and small amount of MA; the hazard ratio of chemotherapy was 0.46, compared with best supportive care alone (P = 0.02). CONCLUSIONS: Although the prognosis of pancreatic cancer patients with MA remains poor, selected patients may be candidate for chemotherapy, regardless of the timing of appearance of MA.


Assuntos
Ascite/etiologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Neoplasias Peritoneais/etiologia , Neoplasias Peritoneais/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Ascite/mortalidade , Ascite/patologia , Ascite/terapia , Distribuição de Qui-Quadrado , Feminino , Humanos , Japão , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Cuidados Paliativos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/terapia , Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/terapia , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...